Task Difficulty and Performance Induce Diverse Adaptive Patterns in Gain and Shape of Primary Auditory Cortical Receptive Fields

نویسندگان

  • Serin Atiani
  • Mounya Elhilali
  • Stephen V. David
  • Jonathan B. Fritz
  • Shihab A. Shamma
چکیده

Attention is essential for navigating complex acoustic scenes, when the listener seeks to extract a foreground source while suppressing background acoustic clutter. This study explored the neural correlates of this perceptual ability by measuring rapid changes of spectrotemporal receptive fields (STRFs) in primary auditory cortex during detection of a target tone embedded in noise. Compared with responses in the passive state, STRF gain decreased during task performance in most cells. By contrast, STRF shape changes were excitatory and specific, and were strongest in cells with best frequencies near the target tone. The net effect of these adaptations was to accentuate the representation of the target tone relative to the noise by enhancing responses of near-target cells to the tone during high-signal-to-noise ratio (SNR) tasks while suppressing responses of far-from-target cells to the masking noise in low-SNR tasks. These adaptive STRF changes were largest in high-performance sessions, confirming a close correlation with behavior.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive changes in cortical receptive fields induced by attention to complex sounds Running Title: Adaptive Changes in Receptive Fields

Receptive fields in primary auditory cortex (A1) can be rapidly and adaptively reshaped to enhance responses to salient frequency cues when using single tones as targets. To explore receptive field changes to more complex spectral patterns, we trained ferrets to detect variable, multi-tone targets in the context of background, rippled noise. Recordings from A1 of behaving ferrets showed a consi...

متن کامل

Auditory cortical receptive fields: stable entities with plastic abilities.

To form a reliable, consistent, and accurate representation of the acoustic scene, a reasonable conjecture is that cortical neurons maintain stable receptive fields after an early period of developmental plasticity. However, recent studies suggest that cortical neurons can be modified throughout adulthood and may change their response properties quite rapidly to reflect changing behavioral sali...

متن کامل

Adaptive changes in cortical receptive fields induced by attention to complex sounds.

Receptive fields in primary auditory cortex (A1) can be rapidly and adaptively reshaped to enhance responses to salient frequency cues when using single tones as targets. To explore receptive field changes to more complex spectral patterns, we trained ferrets to detect variable, multitone targets in the context of background, rippled noise. Recordings from A1 of behaving ferrets showed a consis...

متن کامل

Correlates of Auditory Attention and Task Performance in Primary Auditory and Prefrontal Cortex

Abstract Auditory experience can reshape cortical maps and transform receptive field properties of neurons in the auditory cortex of the adult animal in a manner that depends on the behavioral context and the acoustic features of the stimuli. This has been shown in physiological and behavioral experiments, in which auditory cortical cells underwent rapid, context-dependent changes of their rece...

متن کامل

Network architecture, receptive fields, and neuromodulation: computational and functional implications of cholinergic modulation in primary auditory cortex.

Two fundamental issues in auditory cortical processing are the relative importance of thalamocortical versus intracortical circuits in shaping response properties in primary auditory cortex (ACx), and how the effects of neuromodulators on these circuits affect dynamic changes in network and receptive field properties that enhance signal processing and adaptive behavior. To investigate these iss...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2009